找回密码
 注册

新浪微博登陆

只需一步, 快速开始

QQ登录

只需一步,快速开始

快捷导航
事务所专题-柯南20周年纪念事件簿
搜索
查看: 600|回复: 6

[求助]一个简单的问题

[复制链接]

杯户中学生

发表于 2004-8-1 23:34:44 | 显示全部楼层 |阅读模式
这是我弟的奥数题
说有AB两国开会,A国派了a名代表,B国派了b名代表,假设所有的B国代表都至
少认识一个A国代表,而所有的A国代表都不全认识B国代表,求证:
能找到a1,a2,b1,b2四个代表,使得a1认识b1,a2认识b2,且a1不认识b2,
a2不认识b1。

我知道这题很简单,好象挺明显的,但是我不知道怎么表述才好。

杯户中学生

发表于 2004-8-2 01:24:12 | 显示全部楼层

回复:

奥数。。。新一代的声音。。。
回复 喝彩 无视

使用道具 举报

杯户小学生

发表于 2004-8-2 01:56:01 | 显示全部楼层

回复:

只可意会不可言传。。。。。
证明题我最怕!
回复 喝彩 无视

使用道具 举报

杯户中学生

发表于 2004-8-2 07:52:40 | 显示全部楼层

回复:

这道题目属于高中数学竞赛中的图论

证明:将各国的代表看作点,认识的人之间用线相连,不认识的不连。
      设A1为A国代表中认识的人最多的人
      因为“所有的A国代表都不全认识B国代表”
      所以,B国代表中一定有一个人是A1不认识的,记为B2
      因为“所有的B国代表都至少认识一个A国代表”
      所以,B2至少认识一个人,记为A2
      只需再证明:A1认识的人中至少有一个是A2不认识的,记这个人为B1。
      那么A1、A2、B1、B2这四个人满足题意。

      用反证法,如果A2认识A1认识的所有人,那么A2比A1至少多认识一个人(即B2),这与“A1为A国代表中认识的人最多的人”这一假设矛盾,所以A1认识的人中至少有一个是A2不认识的,证明完毕。(看时最好参照下图,有些点未画出)


PS:假设某点是连接点数最多或最少的点是图论中的常用方法。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册 新浪微博登陆

×
回复 喝彩 无视

使用道具 举报

杯户中学生

 楼主| 发表于 2004-8-2 10:49:10 | 显示全部楼层

回复:

我后来想了想 用文氏图来解释不知道可不可以
回复 喝彩 无视

使用道具 举报

杯户中学生

发表于 2004-8-2 15:23:23 | 显示全部楼层

回复:

我不知道这样对不对……
把A和B看成两个集合,假设B都只认识一个A,那么可以把B看成自变量
由函数定义可知,一个B只能对应一个A,也就是说a1和a2不可能同时对应一个B,所以命题成立

我觉得我想错了……
回复 喝彩 无视

使用道具 举报

杯户小学生

发表于 2004-8-3 18:36:49 | 显示全部楼层

回复:

图论。

4楼证得很漂亮
回复 喝彩 无视

使用道具 举报

您需要登录后才可以回帖 登录 | 注册 新浪微博登陆

本版积分规则

Archiver|手机版|小黑屋|名侦探柯南事务所 ( 沪ICP备05038770号 )

GMT+8, 2025-1-23 05:55 , Processed in 0.099309 second(s), 19 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表