主题
最后登录1970-1-1
回帖0
精华
积分141
威望
RP
金钱 柯币
人气 ℃
注册时间2011-5-19
|
发表于 2011-7-2 19:35:52
|
显示全部楼层
本帖最后由 九翼天使 于 2011-7-2 20:14 编辑
第二题:
由于函数y = x^2 - 4px - 2同时过( tan α, 1 ), ( tan β, 1 )两点, 故知Tan α, Tan β满足方程x^2 - 4px - 3 = 0.
根据韦达定理,易知Tan α + Tan β = 4p, Tan α Tan β = -3.
从而
Tan^2 α + Tan^2 β = 16p^2 + 6,
Tan ( α + β ) = ( Tan α + Tan β ) / ( 1 - Tan α Tan β ) = p.
故
2 Cos 2α Cos 2β
= 2 ( 1 - Tan^2 α )( 1 - Tan^2 β ) / ( 1 + Tan^2 α )( 1 + Tan^2 β )
= 2 ( 1 - Tan^2 α - Tan^2 β + Tan^2 α Tan^2 β ) / ( 1 + Tan^2 α + Tan^2 β + Tan^2 α Tan^2 β )
= 2 ( 1 - (16p^2 + 6) + 9 ) / ( 1 + 16p^2 + 6 + 9 )
= 2 ( 4 - 16p^2 ) / ( 16p^2 + 16 )
= ( 1 - 4p^2 ) / 2( p^2 + 1 ).
p Sin 2( α + β )
=2p Tan ( α + β ) / [ 1 + Tan^2 ( α + β ) ]
= 2p^2 / ( p^2 + 1 ).
2 Sin^2 ( α - β )
=2 ( Sin α Cos β - Cos α Sin β )^2
=2 [( Sin α Cos β + Cos α Sin β )^2 - 4 Sin α Cos α Sin β Cos β ]
=2 [ Sin^2 ( α + β ) - Sin 2α Sin 2β ]
=2 [ 1 / Csc^2 ( α + β ) - 4 Tan α Tan β / ( 1 + Tan^2 α )( 1 + Tan^2 β ) ]
=2 [ 1 / ( 1 + Cot^2 ( α + β )) + 12 / ( 1 + Tan^2 α + Tan^2 β + Tan^2 α Tan^2 β ) ]
=2 [ 1 / ( 1 + 1/ Tan^2 ( α + β )) - 12 / ( 1 + 16p^2 + 6 + 9 ) ]
=2 [ 1 / ( 1 + 1/ p^2 ) - 3 / 4( p^2 + 1 ) ]
=2 [ p^2 / ( p^2 + 1 ) - 3 / 4( p^2 + 1 ) ]
=2 ( 4p^2 - 3 ) / 4( p^2 + 1 ).
因此,
2 Cos 2α Cos 2β + p Sin 2( α + β ) + 2 Sin^2 ( α - β )
= ( 1 - 4p^2 ) / 2( p^2 + 1 ) + 2p^2 / ( p^2 + 1 ) + 2 ( 4p^2 - 3 ) / 4( p^2 + 1 )
= ( 2p^2 - 1 ) / ( 4p^2 + 1 ).
还好错得不多,我再检查一下…… |
|